منابع مشابه
Log-optimal Configurations on the Sphere
In this article we consider the distribution of N points on the unit sphere S in R interacting via logarithmic potential. A characterization theorem of the stationary configurations is derived when N = d + 2 and two new log-optimal configurations minimizing the logarithmic energy are obtained for six points on S and seven points on S. A conjecture on the log-optimal configurations of d + 2 poin...
متن کاملA local optimal diastolic inequality on the two-sphere
Using a ramified cover of the two-sphere by the torus, we prove a local optimal inequality between the diastole and the area on the two-sphere near a singular metric. This singular metric, made of two equilateral triangles glued along their boundary , has been conjectured by E. Calabi to achieve the best ratio area over the square of the length of a shortest closed geodesic. Our diastolic inequ...
متن کاملGazeau- Klouder Coherent states on a sphere
In this paper, we construct the Gazeau-Klauder coherent states of a two- dimensional harmonic oscillator on a sphere based on two equivalent approaches. First, we consider the oscillator on the sphere as a deformed (non-degenerate) one-dimensional oscillator. Second, the oscillator on the sphere is considered as the usual (degenerate) two--dimensional oscillator. Then, by investigating the quan...
متن کاملOptimal and optimized domain decomposition methods on the sphere
At the heart of numerical weather prediction algorithms lie a Laplace and positive definite Helmholtz problems on the sphere [12]. Recently, there has been interest in using finite elements [2] and domain decomposition methods [1, 10]. The Schwarz iteration [7, 8, 9] and its variants [9, 4, 5, 6, 3, 11] are popular domain decomposition methods. In this paper, we introduce improved transmission ...
متن کاملDiscrete Laplace-Beltrami Operator on Sphere and Optimal Spherical Triangulations
In this paper we first modify a widely used discrete Laplace Beltrami operator proposed by Meyer et al over triangular surfaces, and then establish some convergence results for the modified discrete Laplace Beltrami operator over the triangulated spheres. A sequence of spherical triangulations which is optimal in certain sense and leads to smaller truncation error of the discrete Laplace Beltra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1980
ISSN: 0898-1221
DOI: 10.1016/0898-1221(80)90027-9